Feel++

:toc: :toc-placement: preamble :toclevels: 1

The Finite Element Embedded Library in C++

== Gitter Discussion Forum

image:https://badges.gitter.im/Join%20Chat.svg["Join the chat at", https://gitter.im/feelpp/feelpp",link="https://gitter.im/feelpp/feelpp"]

== Continuous Integration

=== Platform & Compiler master develop Travis/Ubuntu & Clang >= 3.5 image:https://travis-ci.org/feelpp/feelpp.svg?branch=master["Build Status", link="https://travis-ci.org/feelpp/feelpp"] image:https://travis-ci.org/feelpp/feelpp.svg?branch=develop["Build Status", link="https://travis-ci.org/feelpp/feelpp"] Buildkite Ubuntu 16.10
image:https://badge.buildkite.com/192023cd78277ebeb80f48580ea813c586ec6dcd0365531b33.svg?branch=develop["Build Status", link="https://buildkite.com/feelpp/feelpp"]
===

== Introduction

link:http://www.feelpp.org[Feel++] is a C++ library for arbitrary order Galerkin methods (e.g. finite and spectral element methods) continuous or discontinuous in 1D 2D and 3D. The objectives of this framework is quite ambitious; ambitions which could be express in various ways such as :

  • the creation of a versatile mathematical kernel solving easily problems using different techniques thus allowing testing and comparing methods, e.g. cG versus dG,
  • the creation of a small and manageable library which shall nevertheless encompass a wide range of numerical methods and techniques,
  • build mathematical software that follows closely the mathematical abstractions associated with partial differential equations (PDE),
  • the creation of a library entirely in C++ allowing to create complex and typically multi-physics applications such as fluid-structure interaction or mass transport in haemodynamic.

Some basic installation procedure are available in the link:INSTALL.md[INSTALL] file, the detailled process is available link:http://www.feelpp.org/docs/develop/BuildingP.html[here].

== Releases

Here are the latest releases of Feel++

== Documentation

== Features

  • 1D 2D and 3D (including high order) geometries and also lower topological dimension 1D(curve) in 2D and 3D or 2D(surface) in 3D
  • continuous and discontinuous arbitrary order Galerkin Methods in 1D, 2D and 3D including finite and spectral element methods
  • domain specific embedded language in C++ for variational formulations
  • interfaced with link:http://www.mcs.anl.gov/petsc/[PETSc] for linear and non-linear solvers
  • seamless parallel computations using PETSc
  • interfaced with link:http://www.grycap.upv.es/slepc/[SLEPc] for large-scale sparse standard and generalized eigenvalue solvers
  • supports link:http://www.geuz.org/gmsh[Gmsh] for mesh generation
  • supports link:http://www.geuz.org/gmsh[Gmsh] for post-processing (including on high order geometries)
  • supports link:http://www.paraview.org[Paraview] and CEI/Ensight for post-processing and the following file formats: ensight gold, gmsh, xdmf

== Examples

=== Laplacian in 2D using P3 Lagrange basis functions

Here is a full example to solve $$-\Delta u = f \mbox{ in } \Omega,\quad u=g \mbox{ on } \partial \Omega$$

[source,cpp]

include <feel/feel.hpp>

int main(int argc, char**argv ) { using namespace Feel; Environment env( _argc=argc, _argv=argv, _desc=feel_options(), _about=about(_name="qs_laplacian", _author="Feel++ Consortium", _email="[email protected]"));

auto mesh = unitSquare();
auto Vh = Pch<1>( mesh );
auto u = Vh->element();
auto v = Vh->element();

auto l = form1( _test=Vh );
l = integrate(_range=elements(mesh),
              _expr=id(v));

auto a = form2( _trial=Vh, _test=Vh );
a = integrate(_range=elements(mesh),
              _expr=gradt(u)*trans(grad(v)) );
a+=on(_range=boundaryfaces(mesh), _rhs=l, _element=u,
      _expr=constant(0.) );
a.solve(_rhs=l,_solution=u);

auto e = exporter( _mesh=mesh, _name="qs_laplacian" );
e->add( "u", u );
e->save();
return 0;

}

=== Bratu equation in 2D

Here is a full non-linear example - the Bratu equation - to solve $$-\Delta u + e^u = 0 \mbox{ in } \Omega,\quad u=0 \mbox{ on } \partial \Omega$$.

[source,cpp]

include <feel/feel.hpp>

inline Feel::po::options_description makeOptions() { Feel::po::options_description bratuoptions( "Bratu problem options" ); bratuoptions.add_options() ( "lambda", Feel::po::value()->default_value( 1 ), "exp() coefficient value for the Bratu problem" ) ( "penalbc", Feel::po::value()->default_value( 30 ), "penalisation parameter for the weak boundary conditions" ) ( "hsize", Feel::po::value()->default_value( 0.1 ), "first h value to start convergence" ) ( "export-matlab", "export matrix and vectors in matlab" ) ; return bratuoptions.add( Feel::feel_options() ); }

/**

  • Bratu Problem
  • solve \f$ -\Delta u + \lambda \exp(u) = 0, \quad u_\Gamma = 0\f$ on \f$\Omega\f$ */ int main( int argc, char** argv ) {

    using namespace Feel; Environment env( _argc=argc, _argv=argv, _desc=makeOptions(), _about=about(_name="bratu", _author="Christophe Prud'homme", _email="[email protected]")); auto mesh = unitSquare(); auto Vh = Pch<3>( mesh ); auto u = Vh->element(); auto v = Vh->element(); double penalbc = option(_name="penalbc").as(); double lambda = option(_name="lambda").as();

    auto Jacobian = [=](const vector_ptrtype& X, sparse_matrix_ptrtype& J) { auto a = form2( _test=Vh, _trial=Vh, _matrix=J ); a = integrate( elements( mesh ), gradt( u )trans( grad( v ) ) ); a += integrate( elements( mesh ), lambda( exp( idv( u ) ) )idt( u )id( v ) ); a += integrate( boundaryfaces( mesh ), ( - trans( id( v ) )( gradt( u )N() ) - trans( idt( u ) )( grad( v )N() + penalbctrans( idt( u ) )id( v )/hFace() ) ); }; auto Residual = [=](const vector_ptrtype& X, vector_ptrtype& R) { auto u = Vh->element(); u = X; auto r = form1( _test=Vh, _vector=R ); r = integrate( elements( mesh ), gradv( u )trans( grad( v ) ) ); r += integrate( elements( mesh ), lambdaexp( idv( u ) )id( v ) ); r += integrate( boundaryfaces( mesh ), ( - trans( id( v ) )( gradv( u )N() ) - trans( idv( u ) )( grad( v )N() ) + penalbctrans( idv( u ) )id( v )/hFace() ) ); }; u.zero(); backend()->nlSolver()->residual = Residual; backend()->nlSolver()->jacobian = Jacobian; backend()->nlSolve( _solution=u );

    auto e = exporter( _mesh=mesh ); e->add( "u", u ); e->save(); }

Related Repositories

feelpp-book

feelpp-book

Feel++ Book ...

config

config

Configuration for clusters ...

course-solving-pdes

course-solving-pdes

:book: Course on Solving PDEs with Feel++ ...

docker

docker

:whale: Docker 4 Feel++ ...

homebrew-feelpp

homebrew-feelpp

:beer: Homebrew for Feel++ ...